ON THE p-ADIC L-FUNCTION OF A MODULAR FORM AT A SUPERSINGULAR PRIME
نویسنده
چکیده
In this paper we study the two p-adic L-functions attached to a modular form f = ∑ anq at a supersingular prime p. When ap = 0, we are able to decompose both the sum and the difference of the two unbounded distributions attached to f into a bounded measure and a distribution that accounts for all of the growth. Moreover, this distribution depends only upon the weight of f (and the fact that ap vanishes). From this description we explain how the p-adic L-function is controlled by two Iwasawa functions and by two power series with growth which have a fixed infinite set of zeros (Theorem 5.1). Asymptotic formulas for the p-part of the analytic size of the Tate-Shafarevich group of an elliptic curve in the cyclotomic direction are computed using this result. These formulas compare favorably with results established by M. Kurihara in [11] and B. Perrin-Riou in [23] on the algebraic side. Moreover, we interpret Kurihara’s conjectures on the Galois structure of the Tate-Shafarevich group in terms of these two Iwasawa functions.
منابع مشابه
The main conjecture for CM elliptic curves at supersingular primes
At a prime of ordinary reduction, the Iwasawa “main conjecture” for elliptic curves relates a Selmer group to a p-adic L-function. In the supersingular case, the statement of the main conjecture is more complicated as neither the Selmer group nor the p-adic L-function is well-behaved. Recently Kobayashi discovered an equivalent formulation of the main conjecture at supersingular primes that is ...
متن کاملTwo p-adic L-functions and rational points on elliptic curves with supersingular reduction
Let E be an elliptic curve over Q. We assume that E has good supersingular reduction at a prime p, and for simplicity, assume p is odd and ap = p+ 1− #E(Fp) is zero. Then, as the second author showed, the p-adic L-function Lp,α(E) of E corresponding to α = ±√−p (by Amice-Vélu and Vishik) can be written as Lp,α(E) = f log+p +g logp α by using two Iwasawa functions f and g ∈ Zp[[Gal(Q∞/Q)]] ([20]...
متن کاملSUPERSINGULAR PRIMES AND p-ADIC L-FUNCTIONS
We discuss the problem of finding a p-adic L-function attached to an elliptic curve with complex multiplication over an imaginary quadratic field K, for the case of a prime where the curve has supersingular reduction. While the case of primes of ordinary reduction has been extensively studied and is essentially understood, yielding many deep and interesting results, basic questions remain unans...
متن کاملALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS
We study the properties of Eisenstein-Kronecker numbers, which are related to special values of Hecke L-function of imaginary quadratic fields. We prove that the generating function of these numbers is a reduced (normalized or canonical in some literature) theta function associated to the Poincaré bundle of an elliptic curve. We introduce general methods to study the algebraic and p-adic proper...
متن کاملFormal Groups of Elliptic Curves with Potential Good Supersingular Reduction
Let L be a number field and let E/L be an elliptic curve with potential supersingular reduction at a prime ideal ℘ of L above a rational prime p. In this article we describe a formula for the slopes of the Newton polygon associated to the multiplication-by-p map in the formal group of E, that only depends on the congruence class of p mod 12, the ℘-adic valuation of the discriminant of a model f...
متن کامل